Articles | Open Access | https://doi.org/10.55640/gmj/Volume04Issue12-03

Comprehensive Analysis Of Biochemical Alterations And Hemostatic Dysfunction In Dexamethasone- And Streptozotocin-Induced Type 2 Diabetes Mellitus Models

Raimova G.M. , Institute of Biophysics and Biochemistry, National University of Uzbekistan, 100174, Tashkent, Uzbekistan
Khodjiyev S.S. , Institute of Biophysics and Biochemistry, National University of Uzbekistan, 100174, Tashkent, Uzbekistan
Nasirov Q.E. , Institute of Biophysics and Biochemistry, National University of Uzbekistan, 100174, Tashkent, Uzbekistan
Makhmudova N.K. , Institute of Biophysics and Biochemistry, National University of Uzbekistan, 100174, Tashkent, Uzbekistan

Abstract

Diabetes mellitus remains one of the most significant medical and social problems of modern healthcare due to the steadily increasing prevalence, high rate of chronic complications, and its substantial impact on patients’ quality of life and life expectancy. Experimental models of diabetes, particularly dexamethasone- and streptozotocin-induced models, are widely used to investigate the pathogenetic mechanisms of the disease and to evaluate the efficacy of novel therapeutic approaches. The dexamethasone-induced model is characterized by the development of insulin resistance, hyperglycemia, and disturbances in lipid metabolism, resulting from glucocorticoid-induced suppression of peripheral tissue sensitivity to insulin and enhanced hepatic gluconeogenesis. In contrast, streptozotocin exerts a cytotoxic effect on pancreatic β-cells, leading to their destruction and the development of relative or absolute insulin deficiency. The combined use of these models allows a more comprehensive reproduction of the key pathogenetic features of type 2 diabetes mellitus and provides deeper insight into the mechanisms underlying metabolic dysfunction.

Keywords

Experimental models, dexamethasone, streptozotocin

References

Cho, N. H., Shaw, J. E., Karuranga, S., et al. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Research and Clinical Practice, 2018;138:271–281.

Saeedi, P., Petersohn, I., Salpea, P., et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045. Diabetes Research and Clinical Practice, 2019;157:107843.

WHO. Global report on diabetes. World Health Organization, 2016–2023 updates. (Последние обновлённые данные доступны на сайте WHO, 2023).

Islam, M. S., & Wilson, R. D. Experimental models of type 2 diabetes: A comprehensive review. Laboratory Animals, 2019;53(3):223–234.

Srinivasan, K., Viswanad, B., Asrat, L., et al. Combination models of insulin resistance and β-cell dysfunction in rodents. Indian Journal of Medical Research, 2016–2021 updates;149(1):21–30.

Goyal, S. N., Reddy, N. M., Patil, K. R., et al. Dexamethasone and streptozotocin-induced diabetic models: advances and limitations. Biomedicine & Pharmacotherapy, 2016;84:1523–1532.

van Raalte, D. H., & Diamant, M. Glucocorticoids and insulin resistance: old hormones, new targets. Diabetologia, 2015;58:2218–2229.

Jia, W., et al. Glucocorticoid-induced metabolic disturbances and insulin resistance: mechanisms and therapy. Metabolism, 2021;116:154457.

Lenzen, S. The mechanisms of streptozotocin-induced diabetes. Diabetologia, 2017;60:459–467.

Furman, B. L. Streptozotocin-induced diabetic models in rodents: relevance to human T2DM. British Journal of Pharmacology, 2021;178(11):2191–2201.

Panchal, S. K., & Brown, L. Combination models of metabolic syndrome including dexamethasone and low-dose STZ. Journal of Diabetes Research, 2019; Article ID 5698926.

Yaribeygi, H., Farrokhi, F. R., Butler, A. E., Sahebkar, A. Insulin resistance and oxidative stress: molecular interactions. Journal of Cellular Physiology, 2019;234(6):8152–8161.

Sena, C. M., et al. Endothelial dysfunction in diabetic models: mechanisms and biomarkers. Oxidative Medicine and Cellular Longevity, 2018; Article ID 5278126.

Elmarakby, A. A., Sullivan, J. C. Relationship between oxidative stress, inflammation, and vascular dysfunction in diabetes. Clinical Science, 2019;133:157–173.

Harding, J. L., Pavkov, M. E., Magliano, D. J., et al. Diabetes and vascular complications: epidemiology and mechanisms. Nature Reviews Endocrinology, 2019;15:150–162.

The Effect Of Polyphenols On Hemostasis System Disorders In Rats With Experimental Diabetes M. Guli Raimova¹, S. Siroj Khodzhiev¹, E. Kabul Nasirov¹, K. Nozima Makhmudova¹, R. Rustam Makhmudov² Texas Journal of Multidisciplinary Studies https://zienjournals.com ISSN NO: 2770-0003 June 2025.45-49.

Guli M. Raimova, Nozim N. Khoshimov, Kabil E. Nasirov, Abbaskhan S. Тuraev, Malokhat E. Savutova. Anti-thrombotic action of sulfated polysaccharides on thrombosis caused by thromboplastin. Research Journal of Pharmacy and Technology. 2021; 14(11):6085-8.

Nozim N. Khoshimov, Guli M. Raimova, Kabul E. Nasirov, Zulayho A. Mamatova, Nodira I. Mamadaliyeva, Abbaskhan S. Тuraev. The effect of Sulphated cellulose on System of Haemostasis. Research Journal of Pharmacy and Technology. 2021; 14(6):3283-9.

Gaudet, A. D., & Fonken, L. K.Glucocorticoids and the Brain: Neural Mechanisms Regulating the HPA Axis During Stress.Frontiers in Neuroendocrinology, 2018;49: 1–22.

Tarantino, G., et al.Relationship Between Hepatic Synthesis, Inflammation, and Glucocorticoid Activity.Journal of Clinical Medicine, 2020;9(4):1038.

Heinrich, P. C., et al.Interleukin-6-type Cytokine Signalling Through the gp130/Jak/STAT Pathway.

Biochemical Journal, 2015;473(20): 3379–3409.

Подтверждает, что IL-6 — ключевой стимулятор синтеза фибриногена.

Tanaka, T., Narazaki, M., Kishimoto, T.IL-6 in Inflammation, Immunity, and Disease.Cold Spring Harbor Perspectives in Biology, 2018;10(10):a028452.

Sproston, N. R., Ashworth, J. J.Role of C-reactive protein at sites of inflammation and infection.Frontiers in Immunology, 2018;9:754.

Randeria, S. N., et al.Hyperglycemia, inflammation and coagulation: the triad of diabesity.Diabetes & Metabolic Syndrome, 2019;13(1): 59–64.

Paneni, F., Cosentino, F.Diabetes and vascular disease.European Heart Journal, 2015;36:3038–3046.

Tripodi, A., & Mannucci, P. M. The coagulopathy of chronic conditions: The role of D-dimer.Thrombosis Research, 2016;143: 1–4.

Ghasemi, A., Khalifi, S., & Jedi, S. Streptozotocin-induced model of diabetes: mechanisms and hepatic complications.Journal of Physiology and Biochemistry, 2019;75(1): 79–92

Ugli, D. J. I., Bakhtiyarovich, K. I., et al. The Influence of Polyphenols on Calcium Dynamics in Synaptosomes of Model Rats with Attention Deficit Hyperactivity Disorder of Varying Ages. Trends in Sciences, 2025; 22:10434.

Article Statistics

Downloads

Download data is not yet available.

Copyright License

Download Citations

How to Cite

Comprehensive Analysis Of Biochemical Alterations And Hemostatic Dysfunction In Dexamethasone- And Streptozotocin-Induced Type 2 Diabetes Mellitus Models. (2025). Global Multidisciplinary Journal, 4(12), 30-38. https://doi.org/10.55640/gmj/Volume04Issue12-03