Articles | Open Access |

The R1-MYB Transcription Factor CmREVEILLE2 Activates Chlorophyll Biosynthesis to Mediate Light-Induced Greening in Chrysanthemum Flowers

Dr. Ai-Ling Chen , College of Horticulture, Nanjing Agricultural University, Nanjing, China

Abstract

Background: Chrysanthemum (Chrysanthemum morifolium) is a leading ornamental crop worldwide, prized for its diverse flower colors. Green-flowered varieties are rare and highly valued, yet the molecular mechanisms governing their unique coloration, particularly in response to light, are not well understood. Chlorophyll accumulation in petals is the basis for this green phenotype, but the specific transcription factors that mediate light-induced chlorophyll biosynthesis in chrysanthemum flowers remain to be fully elucidated.

Results: In this study, we investigated the molecular basis of greening in chrysanthemum ray florets. Transcriptomic analysis of light-exposed versus dark-treated florets identified a candidate R1-type MYB transcription factor, designated CmREVEILLE2, whose expression was strongly correlated with light-induced chlorophyll accumulation. CmREVEILLE2 was confirmed to be a nuclear-localized protein, and its expression was rapidly and significantly induced by light. Functional characterization using virus-induced gene silencing (VIGS) indicated that downregulating CmREVEILLE2 resulted in a significant reduction in chlorophyll content and a visually attenuated green phenotype in the ray florets. Mechanistically, yeast one-hybrid (Y1H) and dual-luciferase (DLR) reporter assays revealed that CmREVEILLE2 appears to directly bind to the promoters of key chlorophyll biosynthesis genes, including CmHEMA1 and CmPOR, to activate their transcription.

Conclusion: Our findings suggest that CmREVEILLE2 functions as a critical positive regulator in the light signaling pathway associated with green color formation in chrysanthemum flowers. It appears to act by directly promoting the expression of essential chlorophyll biosynthesis genes, thus driving chlorophyll accumulation. This study provides a novel understanding of flower color regulation and identifies CmREVEILLE2 as a key target for the future molecular breeding of green-flowered chrysanthemum cultivars.

Keywords

Chrysanthemum morifolium, Flower color, Greening, Chlorophyll biosynthesis

References

An J, Wei X, Huo H. Transcriptome analysis reveals the accelerated expression of genes related to photosynthesis and chlorophyll biosynthesis contribution to shade-tolerant in Phoebe bournei. BMC Plant Biol. 2022;22:268. https://doi.org/10.1186/s12870-022-03657-y.

Bonjoch NP, Tamayo PR. Protein content quantification by bradford method. In: Reigosa Roger MJ, editor. Handbook of plant ecophysiology techniques. Dordrecht: Springer;2001.p.283–95. https://doi.org/10.1007/0-306-48057-3_19.

Chen J, Wu S, Dong F, Li J, Zeng L, Tang J, et al. Mechanism underlying the shading-induced chlorophyll accumulation in tea leaves. Front Plant Sci. 2021;12: 779819. https://doi.org/10.3389/fpls.2021.779819.

Chen S, Wang H, Li R, Wang Z, Luo J, Wang C. Characterization of CmMYC2 in formation of green color in ray florets of Chrysanthemum. Acta Horticulturae Sinica. 2022;49:2377–87. https://doi.org/10.16420/j.issn.0513-353x.2021-0524.

Dong W, Li M, Li Z, Li S, Zhu Y, Wang Z. Transcriptome analysis of the molecular mechanism of Chrysanthemum flower color change under short-day photoperiods. Plant Physiol Biochem. 2020;146:315–28. https://doi.org/10.1016/j.plaphy.2019.11.027.

Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L. MYB transcription factors in Arabidopsis. Trends Plant Sci. 2010;15:573–81. https://doi.org/10.1016/j.tplants.2010.06.005.

Fankhauser C, Christie JM. Plant phototropic growth. Curr Biol. 2015;25:R384–9. https://doi.org/10.1016/j.cub.2015.03.020.

Fu H, Zeng T, Zhao Y, Luo T, Deng H, Meng C, et al. Identification of chlorophyll metabolism and photosynthesis-related genes regulating green flower color in chrysanthemum by integrative transcriptome and weighted correlation network analyses. Genes (Basel). 2021;12:449. https://doi.org/10.3390/genes12030449.

Gao S, Gao J, Zhu X, Song Y, Li Z, Ren G, et al. ABF2, ABF3, and ABF4 promote ABA-mediated chlorophyll degradation and leaf senescence by transcriptional activation of chlorophyll catabolic genes and senescence-associated genes in Arabidopsis. Mol Plant. 2016;9:1272–85. https://doi.org/10.1016/j.molp.2016.06.006.

Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat Biotechnol. 2011;29:644–52. https://doi.org/10.1038/nbt.1883.

Guo Y, Ren G, Zhang K, Li Z, Miao Y, Guo H. Leaf senescence: progression, regulation, and application. Mol Horticulture. 2021;1:5. https://doi.org/10.1186/s43897-021-00006-9.

Han X, Shen Y, Wang Y, Shen J, Wang H, Ding S, et al. Transcriptome revealed the effect of shading on the photosynthetic pigment and photosynthesis of overwintering tea leaves. Agronomy. 2023;13:1701. https://doi.org/10.3390/agronomy13071701.

He C, Liu X, Teixeira da Silva JA, Liu N, Zhang M, Duan J. Transcriptome sequencing and metabolite profiling analyses provide comprehensive insight into molecular mechanisms of flower development in Dendrobium officinale (Orchidaceae). Plant Mol Biol. 2020;104:529–48. https://doi.org/10.1007/s11103-020-01058-z.

Hong Y, Bai X, Sun W, Jia F, Dai S. The numerical classification of chrysanthemum flower color phenotype. Acta Horticulturae Sinica. 2012;39:1330–40.

Jeong YS, Choi H, Kim JK, Baek SA, You MK, Lee D, et al. Overexpression of OsMYBR22/ OsRVE1 transcription factor simultaneously enhances chloroplast-dependent metabolites in rice grains. Metab Eng. 2022;70:89–101. https://doi.org/10.1016/j.ymben.2021.12.014.

Jia T, Ito H, Hu X, Tanaka A. Accumulation of the NON-YELLOW COLORING 1 protein of the chlorophyll cycle requires chlorophyll b in Arabidopsis thaliana. Plant J. 2015;81:586–96. https://doi.org/10.1111/tpj.12753.

Jiao Y, Lau OS, Deng X. Light-regulated transcriptional networks inhigher plants. Nat Rev Genet. 2007;8:217–30. https://doi.org/10.1038/nrg2049.

Job N, Datta S. PIF3/HY5 module regulates BBX11 to suppress protochlorophyllide levels in dark and promote photomorphogenesis in light. New Phytol. 2021;230:190–204. https://doi.org/10.1111/nph.17149.

Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, et al. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002;30:325–7. https://doi.org/10.1093/nar/30.1.325.

Li S, Gao J, Yao L, Ren G, Zhu X, Gao S, et al. The role of ANAC072 in the regulation of chlorophyll degradation during age-and dark-induced leaf senescence. Plant Cell Rep. 2016;35:1729–41. https://doi.org/10.1007/s00299-016-1991-1.

Liu X, Li Y, Zhong S. Interplay between light and plant hormones in the control of Arabidopsis seedling chlorophyll biosynthesis. Front Plant Sci. 2017;8:1433. https://doi.org/10.3389/fpls.2017.01433.

Liu L, Lin N, Liu X, Yang S, Wang W, Wan X. From chloroplast biogenesis to chlorophyll accumulation: the interplay of light and hormones on gene expression in Camellia sinensis cv. Shuchazao Leaves Front Plant Sci. 2020;11:256. https://doi.org/10.3389/fpls.2020.00256.

Liu W, Liu S, Zhang K, Xie M, Sun H, Huang X, et al. Chlorophyllase is transcriptionally regulated by CsMYB308/CsDOF3 in young leaves of tea plant. Hortic Plant J. 2023;9:1162–76. https://doi.org/10.1016/j.hpj.2022.12.001.

Liu S, Cheng Y, Zhao X, Wang E, Liu T, Zhang H, et al. The transcription factor StMYB113 regulates light-induced greening by modulating steroidal glycoalkaloid biosynthesis in potatoes (Solanum tuberosum L.). Hortic Adv. 2024;2:7. https://doi.org/10.1007/s44281-023-00025-0.

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods. 2001;25:402–8. https://doi.org/10.1006/meth.2001.1262.

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:1–21. https://doi.org/10.1186/s13059-014-0550-8.

Luo J, Wang H, Chen S, Ren S, Fu H, Li R, et al. CmNAC73 mediates the formation of green color in chrysanthemum flowers by directly activating the expression of chlorophyll biosynthesis genes HEMA1 and CRD1. Genes (Basel). 2021;12:704. https://doi.org/10.3390/genes12050704.

Mathur S, Jain L, Jajoo A. Photosynthetic efficiency in sun and shade plants. Photosynthetica. 2018;56:354–65. https://doi.org/10.1007/s11099-018-0767-y.

Mekapogu M, Kwon OK, Song HY, Jung JA. Towards the improvement of ornamental attributes in chrysanthemum: recent progress in biotechnological advances. Int J Mol Sci. 2022;23:12284. https://doi.org/10.3390/ijms232012284.

Mishanin VI, Trubitsin BV, Patsaeva SV, Ptushenko VV, Solovchenko AE, Tikhonov AN. Acclimation of shade-tolerant and light-resistant Tradescantia species to growth light: chlorophyll a fluorescence, electron transport, and xanthophyll content. Photosynth Res. 2017;133:87–102. https://doi.org/10.1007/s11120-017-0339-1.

Nakano M, Hirakawa H, Fukai E, Toyoda A, Kajitani R, Minakuchi Y, et al. A chromosome-level genome sequence of Chrysanthemum seticuspe, a model species for hexaploid cultivated chrysanthemum. Commun Biol. 2021;4:1167. https://doi.org/10.1038/s42003-021-02704-y.

Narbona E, del Valle JC, Whittall JB. Painting the green canvas: how pigments produce flower colours. Biochemist. 2021;43:6–12. https://doi.org/10.1042/bio_2021_137.

Ohmiya A, Oda-Yamamizo C, Kishimoto S. Overexpression of CONSTANS-like 16 enhances chlorophyll accumulation in petunia corollas. Plant Sci. 2019;280:90–6. https://doi.org/10.1016/j.plantsci.2018.11.013.

Potosí-Calvache DC, Vanegas-Mahecha P, Martínez-Correa HA. Convective drying of squash (Cucurbita moschata): Influence of temperature and air velocity on effective moisture diffusivity, carotenoid content and total phenols. Dyna 2017;84:112–9. https://doi.org/10.15446/dyna.v84n202.63904.

Roguz K, Gallagher MK, Senden E, Bar-Lev Y, Lebel M, Heliczer R, et al. All the colors of the rainbow: diversification of flower color and intraspecific color variation in the genus Iris. Front Plant Sci. 2020;11: 569811. https://doi.org/10.3389/fpls.2020.569811.

Schelbert S, Aubry S, Burla B, Agne B, Kessler F, Krupinska K, et al. Pheophytin pheophorbide hydrolase (pheophytinase) is involved in chlorophyll breakdown during leaf senescence in Arabidopsis. Plant Cell. 2009;21:767–85. https://doi.org/10.1105/tpc.108.064089.

Singh T, Bala M. Effect of foliar spray of benzyl adenine, gibberellic acid and putrescine on post-harvest keeping quality of Chrysanthemum. Agricultural Research Journal. 2018;55:386–8. https://doi.org/10.5958/2395-146X.2018.00073.X.

Song C, Liu Y, Song A, Dong G, Zhao H, Sun W, et al. The Chrysanthemum nankingense genome provides insights into the evolution and diversification of Chrysanthemum flowers and medicinal traits. Mol Plant. 2018;11:1482–91. https://doi.org/10.1016/j.molp.2018.10.003.

Stolárik T, Hedtke B, Šantrůček J, Ilík P, Grimm B, Pavlovič A. Transcriptional and post-translational control of chlorophyll biosynthesis by dark-operative protochlorophyllide oxidoreductase in Norway spruce. Photosynth Res. 2017;132:165–79. https://doi.org/10.1007/s11120-017-0354-2.

Tan XL, Fan ZQ, Kuang JF, Lu WJ, Reiter RJ, Lakshmanan P, et al. Melatonin delays leaf senescence of Chinese flowering cabbage by suppressing ABFs-mediated abscisic acid biosynthesis and chlorophyll degradation. J Pineal Res. 2019;67: e12570. https://doi.org/10.1111/jpi.12570.

Tanaka A, Ito H. Chlorophyll degradation and its physiological function. Plant Cell Physiol. 2025;66:139–52. https://doi.org/10.1093/pcp/pcae093.

Tanaka A, Tanaka R. Chlorophyll metabolism. Curr Opin Plant Biol. 2006;9:248–55. https://doi.org/10.1016/j.pbi.2006.03.011.

Wang P, Grimm B. Connecting chlorophyll metabolism with accumulation of the photosynthetic apparatus. Trends Plant Sci. 2021;26:484–95. https://doi.org/10.1016/j.tplants.2020.12.005.

Wang T, Wei Q, Wang Z, Liu W, Zhao X, Ma C, et al. CmNF-YB8 affects drought resistance in Chrysanthemum by altering stomatal status and leaf cuticle thickness. J Integr Plant Biol. 2022;64:741–55. https://doi.org/10.1111/jipb.13201.

Wang Y, Jing T, Liu X, Ai X, Bi H. SlTDC modulates photosynthesis of senescent leaves in tomato. Hortic Adv. 2024;2:16. https://doi.org/10.1007/s44281-024-00039-2.

Xu L, Xu H, Cao Y, Yang P, Feng Y, Tang Y, et al. Validation of reference genes for quantitative real-time PCR during bicolor tepal development in asiatic hybrid lilies (Lilium spp.). Front Plant Sci. 2017;8:669. https://doi.org/10.3389/fpls.2017.00669.

Yamatani H, Ito T, Nishimura K, Yamada T, Sakamoto W, Kusaba M. Genetic analysis of chlorophyll synthesis and degradation regulated by balance of chlorophyll metabolism. Plant Physiol. 2022;189:419–32. https://doi.org/10.1093/plphys/kiac059.

Yang T, Ali M, Lin L, Li P, He H, Zhu Q, et al. Recoloring tomato fruit by CRISPR/Cas9-mediated multiplex gene editing. Hortic Res. 2023;10:uhac214. https://doi.org/10.1093/hr/uhac214.

Yong S, Chen Q, Xu F, Fu H, Liang G, Guo Q. Exploring the interplay between angiosperm chlorophyll metabolism and environmental factors. Planta. 2024;260:25. https://doi.org/10.1007/s00425-024-04437-8.

Yue C, Wang Z, Yang P. The effect of light on the key pigment compounds of photosensitive etiolated tea plant. Bot Stud. 2021;62:21. https://doi.org/10.1186/s40529-021-00329-2.

Zeng T, Li JW, Xu ZZ, Zhou L, Li JJ, Yu Q, et al. TcMYC2 regulates Pyrethrin biosynthesis in Tanacetum cinerariifolium. Hortic Res. 2022;9:uhac178. https://doi.org/10.1093/hr/uhac178.

Zhang X, Li Y, Yan H, Cai K, Li H, Wu Z, et al. Integrated metabolomic and transcriptomic analyses reveal different metabolite biosynthesis profiles of Juglans mandshurica in shade. Front Plant Sci. 2022;13: 991874. https://doi.org/10.3389/fpls.2022.991874.

Zhao X, Jia T, Hu X. HCAR is a limitation factor for chlorophyll cycle and chlorophyll b degradation in chlorophyll-b-overproducing plants. Biomolecules. 2020;10:1639. https://doi.org/10.3390/biom10121639.

Zheng X, Lan J, Yu H, Zhang J, Zhang Y, Qin Y, et al. Arabidopsis transcription factor TCP4 represses chlorophyll biosynthesis to prevent petal greening. Plant Commun. 2022;3: 100309. https://doi.org/10.1016/j.xplc.2022.100309.

Zhu X, Chen J, Qiu K, Kuai B. Phytohormone and light regulation of chlorophyll degradation. Front Plant Sci. 2017;8:1911. https://doi.org/10.3389/fpls.2017.01911.

Article Statistics

Downloads

Download data is not yet available.

Copyright License

Download Citations

How to Cite

The R1-MYB Transcription Factor CmREVEILLE2 Activates Chlorophyll Biosynthesis to Mediate Light-Induced Greening in Chrysanthemum Flowers. (2025). Global Multidisciplinary Journal, 4(11), 1-16. https://www.grpublishing.org/journals/index.php/gmj/article/view/196