
The Dual Harvest: A Systematic Review of Agrivoltaic Systems' Impact on Crop Production and Energy Generation
Dr. Anika Sharma , Centre for Sustainable Energy and Agriculture, Indian Institute of Science (IISc), Bangalore, India Prof. Benjamin Carter , Department of Soil and Crop Sciences, Cornell University, Ithaca, USAAbstract
Background: The increasing competition for land between agriculture and energy production has created a need for innovative solutions that can optimize land use. Agrivoltaic systems, which co-locate solar panels and crops, have emerged as a promising approach to address this challenge.
Objective: This comprehensive review synthesizes the experimental findings and field applications of agrivoltaic systems to provide a holistic understanding of their potential benefits and challenges.
Methods: A systematic literature search was conducted to identify relevant studies published in the last decade. The selected studies were analyzed to extract data on the impact of agrivoltaic systems on crop production, energy generation, and economic viability.
Results: The review of 108 studies reveals that agrivoltaic systems can have a positive impact on both crop production and energy generation. The shading provided by the solar panels can improve crop yields and water use efficiency, while the vegetation can cool the solar panels and increase their efficiency. However, the performance of agrivoltaic systems is highly dependent on the specific design, crop type, and climate.
Conclusion: Agrivoltaic systems have the potential to be a key technology in the transition to a more sustainable food and energy system. However, further research is needed to optimize their design and management for different contexts.
Keywords
Agrivoltaics, Agrophotovoltaics, Dual-Use Land
References
Poonia S, Jat NK, Santra P, Singh AK, Jain D, Meena HM. Techno-economic evaluation of different agri-voltaic designs for the hot arid ecosystem India. Renew Energy Jan. 2022;184:149–63. https://doi.org/10.1016/j.renene.2021.11.074.
Choi CS, Macknick J, Li Y, Bloom D, McCall J, Ravi S. Environmental co-benefits of maintaining native vegetation with solar photovoltaic infrastructure. Earth’s Futur Jun. 2023;11(6). https://doi.org/10.1029/2023EF003542.
Andrew AC, et al. Herbage and sheep production from simple, diverse, and legume pastures established in an agrivoltaic production system. Grass Forage Sci Jun. 2024;79(2):294–307. https://doi.org/10.1111/gfs.12653.
Willockx B, Lavaert C, Cappelle J. Performance evaluation of vertical bifacial and single-axis tracked agrivoltaic systems on arable land. Renew Energy Nov. 2023;217:119181. https://doi.org/10.1016/j.renene.2023.119181.
Valle B, et al. Increasing the total productivity of a land by combining mobile photovoltaic panels and food crops. Appl Energy Nov. 2017;206:1495–507. https://doi.org/10.1016/j.apenergy.2017.09.113.
Andrew AC, Higgins CW, Smallman MA, Graham M, Ates S. Herbage yield, lamb growth and foraging behavior in agrivoltaic production system. Front Sustain Food Syst 2021;5(Apr). https://doi.org/10.3389/fsufs.2021.659175.
Zheng J, et al. Increasing the comprehensive economic benefits of farmland with even-lighting agrivoltaic systems. PLoS One Jul. 2021;16(7):e0254482. https://doi.org/10.1371/journal.pone.0254482.
Reher T, et al. Potential of sugar beet (beta vulgaris) and wheat (Triticum aestivum) production in vertical bifacial, tracked, or elevated agrivoltaic systems in Belgium. Appl Energy Apr. 2024;359:122679. https://doi.org/10.1016/j.apenergy.2024.122679.
Macknick J, et al. The 5 Cs of agrivoltaic success factors in the United States: lessons from the InSPIRE research study [Online]. Available: https://www.nrel.gov/docs/fy22osti/83566.pdf; 2022.
Kumpanalaisatit M, Setthapun W, Sintuya H, Pattiya A, Jansri SN. Current status of agrivoltaic systems and their benefits to energy, food, environment, economy, and society. Sustain Prod Consum Sep. 2022;33:952–63. https://doi.org/10.1016/j.spc.2022.08.013.
Al Mamun MA, Dargusch P, Wadley D, Zulkarnain NA, Aziz AA. A review of research on agrivoltaic systems. Renew Sustain Energy Rev Jun. 2022;161:112351. https://doi.org/10.1016/j.rser.2022.112351.
Hernandez RR, et al. Techno–ecological synergies of solar energy for global sustainability. Nat Sustain Jul. 2019;2(7):560–8. https://doi.org/10.1038/s41893-019-0309-z.
Sarr A, Soro YM, Tossa AK, Diop L. Agrivoltaic, a synergistic Co-Location of agricultural and energy production in perpetual mutation: a comprehensive review. Processes Mar. 2023;11(3):948. https://doi.org/10.3390/pr11030948.
Toledo C, Scognamiglio A. Agrivoltaic systems design and assessment: a critical review, and a descriptive model towards a sustainable landscape vision (ThreeDimensional agrivoltaic patterns). Sustainability Jun. 2021;13(12):6871. https://doi.org/10.3390/su13126871.
Trommsdorff M, Dhal IS, Ozdemir ¨ OE, ¨ Ketzer D, Weinberger N, Rosch ¨ C. Agrivoltaics: solar power generation and food production. In: Solar energy advancements in agriculture and food production systems. Elsevier; 2022. p. 159–210. https://doi.org/10.1016/B978-0-323-89866-9.00012-2.
Walston LJ, et al. Opportunities for agrivoltaic systems to achieve synergistic food-energy-environmental needs and address sustainability goals. Front Sustain Food Syst 2022;6(Sep). https://doi.org/10.3389/fsufs.2022.932018.
Cagle AE, Shepherd M, Grodsky SM, Armstrong A, Jordaan SM, Hernandez RR. Standardized metrics to quantify solar energy-land relationships: a global systematic review. Front Sustain 2023;3(Feb). https://doi.org/10.3389/frsus.2022.1035705.
Page MJ, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ Mar. 2021:n71. https://doi.org/10.1136/bmj.n71.
Vidotto LC, Schneider K, Morato RW, do Nascimento LR, Rüther R. An evaluation of the potential of agrivoltaic systems in Brazil. Appl Energy Apr. 2024;360:122782. https://doi.org/10.1016/j.apenergy.2024.122782.
Cinderby S, Parkhill KA, Langford S, Muhoza C. Harnessing the sun for agriculture: pathways to the successful expansion of Agrivoltaic systems in East Africa. Energy Res Social Sci Oct. 2024;116:103657. https://doi.org/10.1016/j.erss.2024.103657.
Li Z, et al. Sustainable phytoextraction of metal-polluted agricultural land used for commercial photovoltaic power generation. J Clean Prod Mar. 2023;391:136093. https://doi.org/10.1016/j.jclepro.2023.136093.
AL-agele HA, Proctor K, Murthy G, Higgins C. A case study of tomato (Solanum lycopersicon var. legend) production and water productivity in Agrivoltaic systems. Sustainability Mar. 2021;13(5):2850. https://doi.org/10.3390/su13052850.
Dupraz C. Assessment of the ground coverage ratio of agrivoltaic systems as a proxy for potential crop productivity. Agrofor Syst Dec. 2024;98(8):2679–96. https://doi.org/10.1007/s10457-023-00906-3.
Braga DS, Kazmerski LL, Cassini DA, Camatta V, Diniz ASAC. Performance of bifacial PV modules under different operating conditions in the state of Minas Gerais, Brazil. Renew Energy Environ Sustain Nov. 2023;8:23. https://doi.org/10.1051/rees/2023021.
Ma Lu S, et al. Wavelength-selective solar photovoltaic systems to enhance spectral sharing of sunlight in agrivoltaics. Joule Sep. 2024;8(9):2483–522. https://doi.org/10.1016/j.joule.2024.08.006.
Widmer J, Christ B, Grenz J, Norgrove L. Agrivoltaics, a promising new tool for electricity and food production: a systematic review. Renew Sustain Energy Rev Mar. 2024;192:114277. https://doi.org/10.1016/j.rser.2023.114277.
Zhang W, et al. Agricultural friendly single-axis dynamic agrivoltaics: simulations, experiments and a large-scale application for Chinese solar greenhouses. Appl Energy Nov. 2024;374:123891. https://doi.org/10.1016/j.apenergy.2024.123891.
Lopez G, et al. Agrivoltaic systems: an innovative technique to protect fruit trees from climate change. Acta Hortic Apr. 2023;(1366):173–86. https://doi.org/10.17660/ActaHortic.2023.1366.20.
Carvalho Fonsˆeca V de F, et al. Shade of solar panels relieves heat load of sheep. Appl Anim Behav Sci Aug. 2023;265:105998. https://doi.org/10.1016/j.applanim.2023.105998.
Faria AFPA, et al. Use of solar panels for shade for holstein heifers. Animals Jan. 2023;13(3):329. https://doi.org/10.3390/ani13030329.
Schindele S, et al. Implementation of agrophotovoltaics: techno-economic analysis of the price-performance ratio and its policy implications. Appl Energy May 2020;265:114737. https://doi.org/10.1016/j.apenergy.2020.114737.
Campana PE, Stridh B, Amaducci S, Colauzzi M. Optimisation of vertically mounted agrivoltaic systems. J Clean Prod Nov. 2021;325:129091. https://doi.org/10.1016/j.jclepro.2021.129091.
Luo J, Luo Z, Li W, Shi W, Sui X. The early effects of an agrivoltaic system within a different crop cultivation on soil quality in dry–hot valley eco-fragile areas. Agronomy Mar. 2024;14(3):584. https://doi.org/10.3390/agronomy14030584.
Kumpanalaisatit M, Setthapun W, Sintuya H, Jansri SN. Efficiency improvement of ground-mounted solar power generation in agrivoltaic system by cultivation of Bok Choy (Brassica rapa subsp. chinensis L.) under the panels. Int J Renew Energy Dev Feb. 2022;11(1):103–10. https://doi.org/10.14710/ijred.2022.41116.
Choi CS, Macknick J, McCall J, Bertel R, Ravi S. Multi-year analysis of physical interactions between solar PV arrays and underlying soil-plant complex in vegetated utility-scale systems. Appl Energy Jul. 2024;365:123227. https://doi.org/10.1016/j.apenergy.2024.123227.
Teng JWC, Soh CB, Devihosur SC, Tay RHS, Jusuf SK. Effects of agrivoltaic systems on the surrounding rooftop microclimate. Sustainability Jun. 2022;14(12):7089. https://doi.org/10.3390/su14127089.
Rodriguez-Pastor DA, Ildefonso-Sanchez AF, Soltero VM, Peralta ME, Chacartegui R. A new predictive model for the design and evaluation of bifacial photovoltaic plants under the influence of vegetation soils. J Clean Prod Jan. 2023;385:135701. https://doi.org/10.1016/j.jclepro.2022.135701.
Waghmare RM, Jilte R, Joshi S. Performance analysis of Agrophotovoltaic systems with Solanum lycopersicum crops. Mater Today Proc 2023;72:1284–9. https://doi.org/10.1016/j.matpr.2022.09.300.
Barron-Gafford GA, et al. Agrivoltaics provide mutual benefits across the food–energy–water nexus in drylands. Nat Sustain Sep. 2019;2(9):848–55. https://doi.org/10.1038/s41893-019-0364-5.
Willockx B, Reher T, Lavaert C, Herteleer B, Van de Poel B, Cappelle J. Design and evaluation of an agrivoltaic system for a pear orchard. Appl Energy Jan. 2024;353:122166. https://doi.org/10.1016/j.apenergy.2023.122166.
Ramos-Fuentes IA, Elamri Y, Cheviron B, Dejean C, Belaud G, Fumey D. Effects of shade and deficit irrigation on maize growth and development in fixed and dynamic AgriVoltaic systems. Agric Water Manag Apr. 2023;280:108187. https://doi.org/10.1016/j.agwat.2023.108187.
Zainali S, et al. Computational fluid dynamics modelling of microclimate for a vertical agrivoltaic system. Energy Nexus Mar. 2023;9:100173. https://doi.org/10.1016/j.nexus.2023.100173.
Marrou H, Dufour L, Wery J. How does a shelter of solar panels influence water flows in a soil–crop system? Eur J Agron Oct. 2013;50:38–51. https://doi.org/10.1016/j.eja.2013.05.004.
Hassanpour Adeh E, Selker JS, Higgins CW. Remarkable agrivoltaic influence on soil moisture, micrometeorology and water-use efficiency. PLoS One Nov. 2018;13(11):e0203256. https://doi.org/10.1371/journal.pone.0203256.
Weselek A, Bauerle A, Zikeli S, Lewandowski I, Hogy ¨ P. Effects on crop development, yields and chemical composition of celeriac (Apium graveolens L. var. rapaceum) cultivated underneath an agrivoltaic system. Agronomy Apr. 2021;11(4):733. https://doi.org/10.3390/agronomy11040733.
Jiang S, et al. Effects of different photovoltaic shading levels on kiwifruit growth, yield and water productivity under ‘agrivoltaic’ system in Southwest China. Agric Water Manag Jul. 2022;269:107675. https://doi.org/10.1016/j.agwat.2022.107675.
Min SY, Kim BM, Yun HK, Jung JH, Oh W. Effects of environmental changes by an agrivoltaic system on growth and quality characteristics of Kimchi cabbage. J People, Plants, Environ Dec. 2022;25(6):659–67. https://doi.org/10.11628/ksppe.2022.25.6.659.
Othman NF, et al. Advancement in agriculture approaches with agrivoltaics natural cooling in large scale solar PV farms. Agriculture Apr. 2023;13(4):854. https://doi.org/10.3390/agriculture13040854.
Fagnano M, et al. Effects of a photovoltaic plant on microclimate and crops’ growth in a mediterranean area. Agronomy 2024;14(3):466. https://doi.org/10.3390/agronomy14030466.
Marrou H, Guilioni L, Dufour L, Dupraz C, Wery J. Microclimate under agrivoltaic systems: is crop growth rate affected in the partial shade of solar panels? Agric For Meteorol Aug. 2013;177:117–32. https://doi.org/10.1016/j.agrformet.2013.04.012.
Ferrara G, Boselli M, Palasciano M, Mazzeo A. Effect of shading determined by photovoltaic panels installed above the vines on the performance of cv. Corvina (Vitis vinifera L.). Sci Hortic Jan. 2023;308:111595. https://doi.org/10.1016/j.scienta.2022.111595.
Gonocruz RA, et al. Analysis of the rice yield under an agrivoltaic system: a case study in Japan. Environments Jul. 2021;8(7):65. https://doi.org/10.3390/environments8070065.
Edouard S, Combes D, Van Iseghem M, Ng Wing Tin M, Escobar-Guti´errez AJ. Increasing land productivity with agriphotovoltaics: application to an alfalfa field. Appl Energy Jan. 2023;329:120207. https://doi.org/10.1016/j.apenergy.2022.120207.
Hickey T, Uchanski M, Bousselot J. Vegetable crop growth under photovoltaic (PV) modules of varying transparencies. Heliyon Aug. 2024;10(16):e36058. https://doi.org/10.1016/j.heliyon.2024.e36058.
Akbar A, ibne Mahmood F, Alam H, Aziz F, Bashir K, Zafar Butt N. Field assessment of vertical bifacial agrivoltaics with vegetable production: a case study in lahore, Pakistan. Renew Energy Jun. 2024;227:120513. https://doi.org/10.1016/j.renene.2024.120513.
Kirimura M, et al. Effects of agrivoltaics (photovoltaic power generation facilities on farmland) on growing condition and yield of Komatsuna, Mizuna, Kabu, and spinach. Environ Control Biol Apr. 2022;60(2):117–27. https://doi.org/10.2525/ecb.60.117.
Willockx Brecht, Herteleer Bert, Cappelle Jan. Combining photovoltaic modules and food crops: first agrovoltaic prototype in Belgium. RE&PQJ Jan. 2020;18(3). https://doi.org/10.24084/repqj18.291.
Giri NC, Mohanty RC. Agrivoltaic system: experimental analysis for enhancing land productivity and revenue of farmers. Energy Sustain Dev Oct. 2022;70:54–61. https://doi.org/10.1016/j.esd.2022.07.003.
Weselek A, Bauerle A, Hartung J, Zikeli S, Lewandowski I, Hogy ¨ P. Agrivoltaic system impacts on microclimate and yield of different crops within an organic crop rotation in a temperate climate. Agron Sustain Dev Oct. 2021;41(5):59. https://doi.org/10.1007/s13593-021-00714-y.
Juillion P, Lopez G, Fumey D, Lesniak V, G´enard M, Vercambre G. Shading apple trees with an agrivoltaic system: impact on water relations, leaf morphophysiological characteristics and yield determinants. Sci Hortic Dec. 2022;306:111434. https://doi.org/10.1016/j.scienta.2022.111434.
Uchanski M, Hickey T, Bousselot J, Barth KL. Characterization of agrivoltaic crop environment conditions using opaque and thin-film semi-transparent modules. Energies Mar. 2023;16(7):3012. https://doi.org/10.3390/en16073012.
Disciglio G, Frabboni L, Tarantino A, Stasi A. Association between dynamic agrivoltaic system and cultivation: viability, yields and qualitative assessment of medical plants. Sustainability Nov. 2023;15(23):16252. https://doi.org/10.3390/su152316252.
Giri NC, Mohanty RC. Turmeric crop farming potential under Agrivoltaic system over open field practice in Odisha, India. Environ Dev Sustain May 2024. https://doi.org/10.1007/s10668-024-05086-3.
Savalle–Gloire N, et al. Transient shading in agrivoltaic greenhouses: its impact on growth, architecture, and dry matter accumulation and partition in tomato plants. J Hortic Sci Biotechnol Jan. 2025;100(1):138–51. https://doi.org/10.1080/14620316.2024.2371593.
Ali Abaker Omer A, et al. Water evaporation reduction by the agrivoltaic systems development. Sol Energy Nov. 2022;247:13–23. https://doi.org/10.1016/j.solener.2022.10.022.
Patel UR, Gadhiya GA, Chauhan PM. Techno-economic analysis of agrivoltaic system for affordable and clean energy with food production in India. Clean Technol Environ Policy Jul. 2024;26(7):2117–35. https://doi.org/10.1007/s10098-023-02690-1.
Zhang Z, et al. Spectral-splitting concentrator agrivoltaics for higher hybrid solar energy conversion efficiency. Energy Convers Manag Jan. 2023;276:116567. https://doi.org/10.1016/j.enconman.2022.116567.
Teitel M, et al. Effects of organic photovoltaic modules installed inside greenhouses on microclimate and plants. Biosyst Eng Aug. 2023;232:81–96. https://doi.org/10.1016/j.biosystemseng.2023.06.012.
Scarano A, et al. Effects of the agrivoltaic system on crop production: the case of tomato (Solanum lycopersicum L.). Appl Sci Apr. 2024;14(7):3095. https://doi.org/10.3390/app14073095.
Semeraro T, et al. Shading effects in agrivoltaic systems can make the difference in boosting food security in climate change. Appl Energy Mar. 2024;358:122565. https://doi.org/10.1016/j.apenergy.2023.122565.
Graham M, et al. Partial shading by solar panels delays bloom, increases floral abundance during the late-season for pollinators in a dryland, agrivoltaic ecosystem. Sci Rep Apr. 2021;11(1):7452. https://doi.org/10.1038/s41598-021-86756-4.
Al Mamun MA, Garba II, Campbell S, Dargusch P, DeVoil P, Aziz AA. Biomass production of a sub-tropical grass under different photovoltaic installations using different grazing strategies. Agric Syst May 2023;208:103662. https://doi.org/10.1016/j.agsy.2023.103662.
Giri NC, Mohanty RC, Pradhan RC, Abdullah S, Ghosh U, Mukherjee A. Agrivoltaic system for energy-food production: a symbiotic approach on strategy, modelling, and optimization. Sustain Comput Informatics Syst Dec. 2023;40:100915. https://doi.org/10.1016/j.suscom.2023.100915.
Cho J, Park SM, Park AR, Lee OC, Nam G, Ra I-H. Application of photovoltaic systems for agriculture: a study on the relationship between power generation and farming for the improvement of photovoltaic applications in agriculture. Energies Sep. 2020;13(18):4815. https://doi.org/10.3390/en13184815.
NREL. System advisor ModelTM version 2023.12.17 user documentation CEC module database. Golden, Colorado, USA 2023 [Online]. Available: https://sam.nrel.gov/.
Fraunhofer Institute. Photovoltaics report [Online]. Available: https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/Photovoltaics-Report.pdf. [Accessed 3 December 2024].
King JA, Boyson DL, Kratochvil WE. Photovoltaic array performance model. Albuquerque, New Mexico; 2004 [Online]. Available: https://energy.sandia.gov/wp-content/gallery/uploads/SAND-2004_PV-Performance-A
WMO. Guide to meteorological instruments and methods of observation. Geneva, Switzerland, https://community.wmo.int/en/activity-areas/imop/wmo-no_8; 2008.
Williams HJ, Hashad K, Wang H, Max Zhang K. The potential for agrivoltaics to enhance solar farm cooling. Appl Energy Feb. 2023;332:120478. https://doi.org/10.1016/j.apenergy.2022.120478.
Marion B, et al. Performance parameters for grid-connected PV systems. In: Conference record of the thirty-first IEEE photovoltaic specialists conference, 2005. IEEE; 2005. p. 1601–6. https://doi.org/10.1109/PVSC.2005.1488451.
Aurora. Understanding PV system losses, part 1: nameplate, mismatch, and LID losses. https://aurorasolar.com/blog/understanding-pv-system-losses-part-1/. [Accessed 21 November 2024].
Gnayem N, et al. Examining the effect of different photovoltaic modules on cucumber crops in a greenhouse agrivoltaic system: a case study. Biosyst Eng May 2024;241:83–94. https://doi.org/10.1016/j.biosystemseng.2024.03.012.
Mohammedi S, Dragonetti G, Admane N, Fouial A. The impact of agrivoltaic systems on tomato crop: a case study in southern Italy. Processes Dec. 2023;11(12):3370. https://doi.org/10.3390/pr11123370.
Sturchio MA, Kannenberg SA, Knapp AK. Agrivoltaic arrays can maintain semiarid grassland productivity and extend the seasonality of forage quality. Appl Energy Feb. 2024;356:122418. https://doi.org/10.1016/j.apenergy.2023.122418.
Dal Pr`a A, et al. Determination of feed yield and quality parameters of whole crop durum wheat (Triticum durum Desf.) biomass under agrivoltaic system. Agrofor Syst Dec. 2024;98(8):2861–73. https://doi.org/10.1007/s10457-024-00979-8.
Potenza E, Croci M, Colauzzi M, Amaducci S. Agrivoltaic system and modelling simulation: a case study of soybean (Glycine max L.) in Italy. Horticulturae Dec. 2022;8(12):1160. https://doi.org/10.3390/horticulturae8121160.
Varo Martínez M, Fern´andez de Ahumada LM, Fuentes García M, Fernandez García P, Casares de la Torre F, Lopez-Luque ´ R. Characterization of an experimental agrivoltaic installation located in a educational centre for farmers in Cordoba (Spain). RE&PQJ Dec. 2023;20(1). https://doi.org/10.24084/repqj20.236.1
Prakash V, et al. Shading and PAR under different density agrivoltaic systems, their simulation and effect on wheat productivity. Eur J Agron Sep. 2023;149:126922. https://doi.org/10.1016/j.eja.2023.1269222.
Gupta V, et al. Optimizing corn agrivoltaic farming through farm-scale experimentation and modeling. Cell Reports Sustain Jul. 2024;1(7):100148. https://doi.org/10.1016/j.crsus.2024.100148.
Janota L, V´avrov´a K, Weger J, Kn´apek J, Kr´alík T. Complex methodology for optimizing local energy supply and overall resilience of rural areas: a case study of Agrovoltaic system with Miscanthus x giganteus plantation within the energy community in the Czech Republic. Renew Energy Aug. 2023;212:738–50. https://doi.org/10.1016/j.renene.2023.05.077.
Sharpe KT, Heins BJ, Buchanan ES, Reese MH. Evaluation of solar photovoltaic systems to shade cows in a pasture-based dairy herd. J Dairy Sci Mar. 2021;104(3):2794–806. https://doi.org/10.3168/jds.2020-18821.
Kampherbeek EW, et al. A preliminary investigation of the effect of solar panels and rotation frequency on the grazing behavior of sheep (Ovis aries) grazing dormant pasture. Appl Anim Behav Sci Jan. 2023;258:105799. https://doi.org/10.1016/j.applanim.2022.105799.
Mathur S, Jain L, Jajoo A. Photosynthetic efficiency in sun and shade plants. Photosynthetica Mar. 2018;56(SPECIAL ISSUE):354–65. https://doi.org/10.1007/s11099-018-0767-y.
Wu A, et al. Contrasting leaf-scale photosynthetic low-light response and its temperature dependency are key to differences in crop-scale radiation use efficiency. New Phytol Mar. 2024;241(6):2435–47. https://doi.org/10.1111/nph.19537.
Sturchio MA, et al. Grassland productivity responds unexpectedly to dynamic light and soil water environments induced by photovoltaic arrays. Ecosphere Dec. 2022;13(12). https://doi.org/10.1002/ecs2.4334.
Choi CS, Cagle AE, Macknick J, Bloom DE, Caplan JS, Ravi S. Effects of revegetation on soil physical and chemical properties in solar photovoltaic infrastructure. Front Environ Sci Aug. 2020;8. https://doi.org/10.3389/fenvs.2020.00140.
Lambert Q, Bischoff A, Cueff S, Cluchier A, Gros R. Effects of solar park construction and solar panels on soil quality, microclimate, CO2 effluxes, and vegetation under a Mediterranean climate. L Degrad De Dec. 2021;32(18):5190–202. https://doi.org/10.1002/ldr.4101.
Li T, Lu L, Kang Z, Li H, Wu J, Du W. Contrasting responses of soil bacterial and fungal networks to photovoltaic power station. Front Microbiol 2024;15(Dec). https://doi.org/10.3389/fmicb.2024.1494681.
Moscatelli MC, Marabottini R, Massaccesi L, Marinari S. Soil properties changes after seven years of ground mounted photovoltaic panels in Central Italy coastal area. Geoderma Reg Jun. 2022;29:e00500. https://doi.org/10.1016/j.geodrs.2022.e00500.
Karlen DL, Mausbach MJ, Doran JW, Cline RG, Harris RF, Schuman GE. Soil quality: a concept, definition, and framework for evaluation (A guest editorial). Soil Sci Soc Am J Jan. 1997;61(1):4–10. https://doi.org/10.2136/sssaj1997.03615995006100010001x.
Dupraz C, Marrou H, Talbot G, Dufour L, Nogier A, Ferard Y. Combining solar photovoltaic panels and food crops for optimising land use: towards new agrivoltaic schemes. Renew Energy Oct. 2011;36(10):2725–32. https://doi.org/10.1016/j.renene.2011.03.005.
Cossu M, Tiloca MT, Cossu A, Deligios PA, Pala T, Ledda L. Increasing the agricultural sustainability of closed agrivoltaic systems with the integration of vertical farming: a case study on baby-leaf lettuce. Appl Energy Aug. 2023;344:121278. https://doi.org/10.1016/j.apenergy.2023.121278.
Di Francia G, Cupo P. A cost–benefit analysis for utility-scale agrivoltaic implementation in Italy. Energies Mar. 2023;16(7):2991. https://doi.org/10.3390/en16072991.
Française R´epublique. Arrˆet´e du 5 juillet 2024 relatif au d´eveloppement de l’agrivoltaïsme et aux conditions d’implantation des installations photovoltaïques sur terrains agricoles, naturels ouforestiers. 2024 [Online]. Available: https://www.legifrance.gouv.fr/jorf/id/JORFTEXT000049891545.
DIN. DIN SPEC 91434:2021-05 agri-photovoltaic systems - requirements for primary agricultural use. Technical rule. Deutsches Institut für Normung; 2021 [Online]. Available: https://www.dinmedia.de/en/technical-rule/din-spec-91434/337886742.
Feltran-Barbieri R, F´eres JG. Degraded pastures in Brazil: improving livestock production and forest restoration. R Soc Open Sci Jul. 2021;8(7):201854. https://doi.org/10.1098/rsos.201854.
ABSOLAR. Energia solar Fotovoltaica no Brasil – Inforgafico ´ ABSOLAR [Online]. Available: https://www.absolar.org.br/mercado/infografico/. [Accessed 16 January 2025].
Pandey G, Lyden S, Franklin E, Harrison MT. Agrivoltaics as an SDG enabler: trade-offs and co-benefits for food security, energy generation and emissions mitigation. Resour Environ Sustain Mar. 2025;19:100186. https://doi.org/10.1016/j.resenv.2024.100186.
Article Statistics
Downloads
Copyright License
Copyright (c) 2025 Dr. Anika Sharma, Prof. Benjamin Carter (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright of all articles published in (GMJ) Journal is retained by the authors. The articles are licensed under the open access Creative Commons CC BY 4.0 license, which means that anyone can download and read the paper for free.