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ABSTRACT  

 

This paper investigates statistical inference methods for autocovariance estimation in functional time 
series under the presence of conditional heteroscedasticity. Functional time series data, which are 
characterized by observations evolving over continuous time or space, often exhibit complex 
dependencies and time-varying volatility patterns. In the presence of conditional heteroscedasticity, 
traditional autocovariance estimators may be biased or inefficient, necessitating the development of 
robust inference techniques. We propose a novel approach based on robust covariance estimation and 
bootstrap resampling to account for heteroscedasticity and provide reliable estimates of 
autocovariance. The efficacy of the proposed methodology is demonstrated through simulations and 
applications to real-world functional time series data, highlighting its ability to capture dynamic 
dependencies and volatility patterns under varying conditions. 
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INTRODUCTION 

Functional time series analysis has emerged as a powerful framework for modeling and analyzing data that 
evolve over continuous time or space. Unlike traditional time series data, which are scalar or multivariate, 
functional time series are characterized by observations that are functions indexed by time or spatial 
coordinates. These data structures arise in various fields, including economics, finance, environmental science, 
and engineering, where capturing the dynamics of evolving processes is essential for understanding underlying 
phenomena. 

Autocovariance estimation plays a central role in functional time series analysis, providing insights into the 
temporal dependencies and volatility patterns present in the data. However, in many real-world applications, 
functional time series exhibit conditional heteroscedasticity, where the variance of observations varies 
systematically with past values or external factors. This heteroscedasticity violates the assumptions of 
traditional autocovariance estimators, leading to biased or inefficient inference. 

In this context, the development of robust statistical inference methods for autocovariance estimation under 
conditional heteroscedasticity is crucial for accurate modeling and prediction of functional time series. Robust 
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inference techniques aim to account for heteroscedasticity and provide reliable estimates of autocovariance, 
even in the presence of complex dependencies and volatility patterns. 

In this paper, we propose a novel approach to statistical inference for autocovariance of functional time series 
under conditional heteroscedasticity. Our methodology is based on robust covariance estimation techniques, 
which leverage robust statistical measures to mitigate the impact of outliers and non-Gaussian disturbances. By 
incorporating robustness principles into autocovariance estimation, our approach enhances the accuracy and 
efficiency of inference in the presence of heteroscedasticity. 

Furthermore, we introduce bootstrap resampling as a means to assess the uncertainty of autocovariance 
estimates and construct valid confidence intervals and hypothesis tests. Bootstrap resampling offers a data-
driven approach to quantify sampling variability and evaluate the robustness of inferential procedures under 
different conditions and model specifications. 

Through simulations and applications to real-world functional time series data, we demonstrate the efficacy of 
our proposed methodology in capturing dynamic dependencies and volatility patterns under varying conditions. 
By providing reliable estimates of autocovariance and enabling robust statistical inference, our approach 
enhances the ability to model and analyze functional time series data in the presence of conditional 
heteroscedasticity. 

In summary, this paper contributes to the advancement of statistical methodology for functional time series 
analysis by addressing the challenge of conditional heteroscedasticity in autocovariance estimation. By 
combining robust covariance estimation techniques with bootstrap resampling, we offer a comprehensive 
framework for robust inference that enhances the reliability and interpretability of functional time series 
models in diverse applications. 

 

METHOD 

In addressing the challenge of statistical inference for autocovariance of functional time series under conditional 
heteroscedasticity, a systematic process was developed to enhance the accuracy and reliability of 
autocovariance estimation in the presence of heteroscedasticity. Initially, robust covariance estimation methods 
were employed to derive autocovariance estimators less susceptible to outliers and non-Gaussian disturbances. 
This involved implementing techniques such as Huber's M-estimator or the Winsorized estimator to obtain 
robust measures of covariance that mitigate the influence of extreme observations and heteroscedasticity. 

Subsequently, a procedure for estimating the conditional heteroscedasticity structure of the functional time 
series was devised. Time-varying variance of observations was modeled using volatility models such as 
autoregressive conditional heteroscedasticity (ARCH) or generalized autoregressive conditional 
heteroscedasticity (GARCH) models. By incorporating volatility modeling techniques, the dynamic nature of 
conditional heteroscedasticity was captured, allowing for adjustments to autocovariance estimation. 

Bootstrap resampling techniques were then implemented to assess the uncertainty of autocovariance estimates 
and construct valid confidence intervals and hypothesis tests. This involved generating multiple resampled 
datasets from the original data, estimating autocovariance functions for each resampled dataset, and computing 
empirical confidence intervals and p-values based on the distribution of resampled autocovariance estimates. 
By quantifying sampling variability, bootstrap resampling facilitated robust inference and stability evaluation 
of inferential procedures under varying conditions and model specifications. 
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Simulations were conducted to evaluate the performance of the proposed methodology under different 
scenarios of conditional heteroscedasticity and autocovariance structures. Simulated datasets with known 
autocovariance properties and heteroscedasticity patterns were generated, and the methodology was applied 
to estimate autocovariance functions and assess the accuracy of inference. 

Finally, the methodology was applied to real-world functional time series data from diverse fields, including 
finance, environmental science, and engineering. By analyzing real-world datasets with complex dependencies 
and heteroscedasticity, the practical utility and effectiveness of the approach were demonstrated in capturing 
dynamic patterns and enhancing inference in functional time series analysis. 

  

 

 

To address the challenge of statistical inference for autocovariance of functional time series under conditional 
heteroscedasticity, we developed a comprehensive methodology that integrates robust covariance estimation 
techniques and bootstrap resampling. The methodology consists of several key steps aimed at enhancing the 
accuracy and reliability of autocovariance estimation in the presence of heteroscedasticity. 

Firstly, we employed robust covariance estimation methods to derive autocovariance estimators that are less 
sensitive to outliers and non-Gaussian disturbances. Traditional autocovariance estimators, such as sample 
autocovariance functions, may be biased or inefficient under conditional heteroscedasticity, leading to 
inaccurate inference. Robust covariance estimators, such as the Huber's M-estimator or the Winsorized 
estimator, provide robust measures of covariance that are less influenced by extreme observations and 
heteroscedasticity. 
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Secondly, we developed a procedure for estimating the conditional heteroscedasticity structure of the functional 
time series. This involved modeling the time-varying variance of observations using appropriate volatility 
models, such as autoregressive conditional heteroscedasticity (ARCH) or generalized autoregressive conditional 
heteroscedasticity (GARCH) models. By incorporating volatility modeling techniques, we were able to capture 
the dynamic nature of conditional heteroscedasticity and adjust autocovariance estimation accordingly. 

Next, we implemented bootstrap resampling techniques to assess the uncertainty of autocovariance estimates 
and construct valid confidence intervals and hypothesis tests. Bootstrap resampling involves generating 
multiple resampled datasets from the original data, estimating autocovariance functions for each resampled 
dataset, and computing empirical confidence intervals and p-values based on the distribution of resampled 
autocovariance estimates. This data-driven approach enables robust inference by quantifying sampling 
variability and evaluating the stability of inferential procedures under different conditions and model 
specifications. 

Furthermore, we conducted simulations to evaluate the performance of our proposed methodology under 
various scenarios of conditional heteroscedasticity and autocovariance structures. Simulated datasets with 
known autocovariance properties and heteroscedasticity patterns were generated, and our methodology was 
applied to estimate autocovariance functions and assess the accuracy of inference. 

Finally, we applied our methodology to real-world functional time series data from diverse fields, including 
finance, environmental science, and engineering. By analyzing real-world datasets with complex dependencies 
and heteroscedasticity, we demonstrated the practical utility and effectiveness of our approach in capturing 
dynamic patterns and enhancing inference in functional time series analysis. 

In summary, the methodology developed in this study offers a robust framework for statistical inference of 
autocovariance in functional time series under conditional heteroscedasticity. By integrating robust covariance 
estimation techniques with bootstrap resampling, our approach enhances the reliability and interpretability of 
autocovariance estimation and facilitates more accurate modeling and analysis of functional time series data in 
diverse applications. 

 

RESULT 

The investigation into statistical inference for autocovariance of functional time series under conditional 
heteroscedasticity yielded notable results that enhance the understanding and applicability of inference 
methods in complex data settings. Firstly, employing robust covariance estimation techniques provided 
autocovariance estimators less prone to the influence of outliers and non-Gaussian disturbances. This 
robustness contributed to more reliable estimates of autocovariance, particularly in the presence of conditional 
heteroscedasticity. 

Additionally, the incorporation of volatility modeling allowed for the characterization of time-varying variance 
structures inherent in functional time series data. By modeling conditional heteroscedasticity using ARCH or 
GARCH models, the methodology effectively captured dynamic volatility patterns, enabling adjustments to 
autocovariance estimation that accounted for heteroscedasticity. 

Bootstrap resampling techniques proved instrumental in assessing the uncertainty of autocovariance estimates 
and constructing valid confidence intervals and hypothesis tests. Through resampling from the original data, 
empirical distributions of autocovariance estimates were generated, facilitating robust inference and stability 
evaluation of inferential procedures under diverse conditions and model specifications. 
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DISCUSSION 

The application of the proposed methodology to simulated and real-world functional time series datasets 
showcased its effectiveness in capturing dynamic dependencies and volatility patterns under varying 
conditions. Robust inference techniques provided reliable estimates of autocovariance, even in the presence of 
complex heteroscedasticity structures, enhancing the interpretability and utility of functional time series 
models. 

Furthermore, the methodology demonstrated its versatility and applicability across diverse fields, including 
finance, environmental science, and engineering. By addressing the challenges posed by conditional 
heteroscedasticity, the methodology facilitated more accurate modeling and analysis of functional time series 
data, contributing to a deeper understanding of underlying processes and phenomena. 

The results also highlight the importance of incorporating robust statistical techniques and volatility modeling 
into autocovariance estimation to account for heteroscedasticity effectively. By acknowledging and addressing 
the presence of conditional heteroscedasticity, inference methods can provide more accurate and reliable 
insights into the temporal dependencies and volatility patterns present in functional time series data. 

 

CONCLUSION 

In conclusion, the investigation into statistical inference for autocovariance of functional time series under 
conditional heteroscedasticity represents a significant advancement in time series analysis methodology. By 
integrating robust covariance estimation techniques with volatility modeling and bootstrap resampling, the 
methodology offers a comprehensive framework for robust inference that enhances the reliability and 
interpretability of functional time series models. 

Moving forward, continued research and application of robust statistical techniques in functional time series 
analysis are essential to address the complexities of real-world data settings. By leveraging advancements in 
statistical methodology, researchers and practitioners can gain deeper insights into the dynamic behavior of 
functional time series data and make informed decisions across a wide range of fields and applications. 
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